Genetic algorithm and M-estimator based robust sequential estimation of parameters of nonlinear sinusoidal signals

نویسندگان

  • Sharmishtha Mitra
  • Amit Mitra
  • Debasis Kundu
چکیده

Estimation of parameters of nonlinear superimposed sinusoidal signals is an important problem in digital signal processing. In this paper, we consider the problem of estimation of parameters of real valued sinusoidal signals. We propose a real-coded genetic algorithm based robust sequential estimation procedure for estimation of signal parameters. The proposed sequential method is based on elitist generational genetic algorithm and robust M-estimation techniques. The method is particularly useful when there is a large number of superimposed sinusoidal components present in the observed signal and is robust with respect to presence of outliers in the data and impulsive heavy tail noise distributions. Simulations studies and real life signal analysis are performed to ascertain the performance of the proposed sequential procedure. It is observed that the proposed methods perform better than the usual non-robust methods of estimation. 2010 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Robust Adaptive Observer-Based Time Varying Fault Estimation

This paper presents a new observer design methodology for a time varying actuator fault estimation. A new linear matrix inequality (LMI) design algorithm is developed to tackle the limitations (e.g. equality constraint and robustness problems) of the well known so called fast adaptive fault estimation observer (FAFE). The FAFE is capable of estimating a wide range of time-varying actuator fault...

متن کامل

A Two-Phase Robust Estimation of Process Dispersion Using M-estimator

Parameter estimation is the first step in constructing any control chart. Most estimators of mean and dispersion are sensitive to the presence of outliers. The data may be contaminated by outliers either locally or globally. The exciting robust estimators deal only with global contamination. In this paper a robust estimator for dispersion is proposed to reduce the effect of local contamination ...

متن کامل

Discrete time robust control of robot manipulators in the task space using adaptive fuzzy estimator

This paper presents a discrete-time robust control for electrically driven robot manipulators in the task space. A novel discrete-time model-free control law is proposed by employing an adaptive fuzzy estimator for the compensation of the uncertainty including model uncertainty, external disturbances and discretization error. Parameters of the fuzzy estimator are adapted to minimize the estimat...

متن کامل

Genetic algorithms based robust frequency estimation of sinusoidal signals with stationary errors

In this paper, we consider the fundamental problem of frequency estimation of multiple sinusoidal signals with stationary errors. We propose genetic algorithm and outlier-insensitive criterion function based technique for the frequency estimation problem. In the simulation studies and real life data analysis, it is observed that the proposed genetic algorithm based robust frequency estimators a...

متن کامل

Harmonics Estimation in Power Systems using a Fast Hybrid Algorithm

In this paper a novel hybrid algorithm for harmonics estimation in power systems is proposed. The estimation of the harmonic components is a nonlinear problem due to the nonlinearity of phase of sinusoids in distorted waveforms. Most researchers implemented nonlinear methods to extract the harmonic parameters. However, nonlinear methods for amplitude estimation increase time of convergence. Hen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010